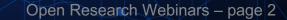
Open Research Webinars

SPADE: A multi-purpose physical-cyber Agriforest drones ecosystem for governance and environmental observation

Aristotelis C. Tagarakis Centre for Research and Technology Hellas - CERTH

Agenda


- The SPADE project
- Description
- Objectives
- SPADE pilots
- SPADE ecosystem

ECLIPSE

FOUNDATION

- Open research
- Next steps

RESEARCH @

THE SPADE PROJECT

MULTI-PURPOSE PHYSICAL-CYBER AGRI-FOREST DRONES ECOSYSTEM FOR GOVERNANCE AND ENVIRONMENTAL OBSERVATION

Funded by the European Union's Horizon Europe Research and Innovation programme within HORIZON-CL6-2021-GOVERNANCE-01 under Grant Agreement no. 101060778

The consortium

21 partners

- 9 European countries (Spain, Greece, Norway, Denmark, Germany, France, Portugal, Finland, Slovakia)
- 1 associated UK

Multidisciplinary consortium

universities, research institutes, small and medium-sized enterprises (SMEs), highly recognised consulting companies and 2 cooperatives

Variety of risks related to drone operations

- Cyber-security breaches
- physical safety and security hazards
- risks of human errors

Regulations concerning drones are still new

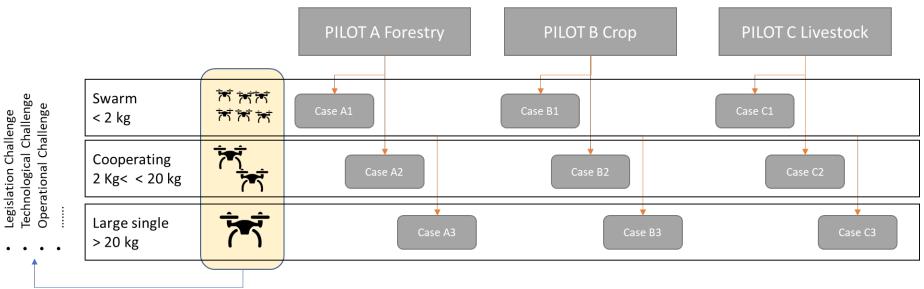
New operations, applications and services built on drones' capabilities are emerging

The technological architecture is getting more complex

The objectives

develop an intelligent ecosystem

- to address the multiple purposes concept of deploying Unmanned Aerial Vehicles (UAVs)
- to promote sustainable digital services in the sectors of forestry, cropping and livestock farming


CROPPING

The pilots

Information intermediator

Domain Expert

Implementer

Forestry pilot

Swarm	Cooperating	Large single (actions)
Goal: improved forest inventory	Goal: Improved performance of forest	Goal: replacing manual labour and wheel machines with drones for higher efficiency and lower environmental impact
Technical solution: flying through the forest with Al-enabled drone swarm		Solution: Cargo drone will be used to move heavy objects (harvested logs) from the forest
current single drone above canopy	Beyond state of art: Tethered drones are applied for military purposes but have never been used	Beyond state of art: Cargo drones have not previously been used in the forestry sector
Risk. Ilving multiple grones and	machines and people needs to be	Risk: flying very heavy drones in areas with forest workers and machines cause safety, health and regulatory risks.

Crop production pilot

Swarm	Cooperating	Large single (actions)
	Goal: Improved pest control in olive orchards,	Goal : replacing manual labour or heavy ground vehicles in agriculture operations (e.g., spraying)
crop fields and orchards with	Technical solution : cooperative under-/above- canopy flight for pest detection in olive trees. Potentially, tethered drone for crop monitoring	Technical solution: heavy
orchards, swarm orchestration for simultaneous data	acquisition in orchards, tethered drone usage in crop monitoring, integration with digital	Beyond state of art : integration of heavy drone mission and operations with SPADE's digital twin
Risk : flying multiple drones and colliding with people, line of sight.	Risk : safety risk	Risk : those related to heavy drones. When spraying is considered, potential health and environmental risks related to the chemicals used.

Crop production pilot

Use cases in potato fields, olive and citrus orchards (terraced crops)

- Plant health monitoring
- Zone mapping
- Zone-based applications
- Sprayer applications
- Selective harvesting
- Disease detection
- Weed detection

Livestock pilot

Swarm	Cooperating	Large single (actions)
Goal: Improved Livestock Monitoring		Goal: To substitute manual labour and ground vehicles with UAVs for flexibility, higher efficiency and lower environmental impact (e.g., Spraying).
Technical solution: flying over detected sheep flocks with AI-enabled drone swarm	Technical solution: Tethered drone from roof of shepherds' vehicles will support operator, monitor environmental conditions and ensure connectivity in remote areas with low connectivity.	Technical solution: Drone payload will be used to carry spraying equipment to deal with disease carrying insects.
Beyond state of art: determine array of sensors via structured deployment of UAVs in swarm formations. Thus, defining virtual sensor combinations.	Beyond state of art: Tethered drones are applied for military purposes but have never been used in Livestock.	Beyond state of art: Spraying drones have never been used for Health control in Livestock.
Risk: flying multiple drones and colliding with people, line of sight	Risk: continuous flying drone above machines and people needs to be addressed	Risk: flying very heavy drones in areas with Livestock may raise safety, animal behaviour and regulatory risks that will be measured during SPADE evaluation stages

Livestock pilot

Wearables on animals

- Support tracking in the absence of drones.
- Provide behavior status

Beacon to UAVs incidents of importance or urgency Collaborate with drones in the livestock health care scenarios

Initial trial

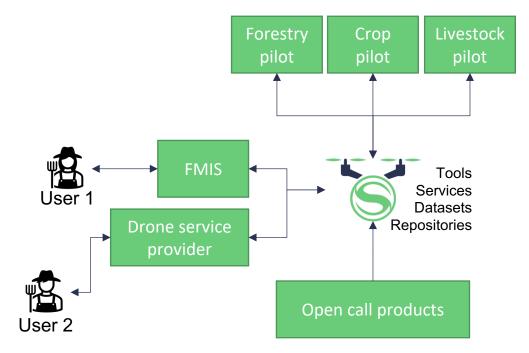
- Scenes included small herds of sheep and goats.
- Height reached max 150 meters.
- Infrared was tested.
- · Second test with mixed populations herds + horses

Sensors

wearable IOT sensors, GPS tracking, accelerometer, NST dashboard developed for SPADE

Results

- Sheep did not seem to bother by the presence of the drone even at small height (<6 meters).
- · Significant amount of data recorded
- Used for edge computing ML.


The SPADE ecosystem

SPADE platform

- Distributed architecture
- Support interoperability, interconnectivity
- Drone data marketplace
 - Data processing and distribution
- Services marketplace

Large scale demonstration

- Pilots
- Open calls

The SPADE open research

Open data

- Repositories
- Codes

Open tools

Services

Open access publications

- Scientific publications
- Popular press and other publications

Project results

• Public documents

Open platform

- External service providers
- External data providers

Next steps

- Finalisation of the system architecture
- System development
- Pilots requirements definition
- Use cases launch and interaction with system
- Open calls launch
 - 2 open calls various topics

Disseminate the final results at the end of SPADE project

