
Open Research Webinars

On-going research to fuel and
enhance Eclipse Steady

Serena Elisa Ponta
SAP Security Research

Software products embed open-source components

● 80% to 90% of software products on

the include OSS components

● 80+% of the codebase of a typical

Java application is open-source

Dependency Graph

● Direct/transitive dependencies

● Duplicates and version conflicts

● Automated build systems handle the

complexity transparently

Open Research Webinars – page 2

Heartbleed, Equifax…

Using components with known vulnerabilities:

● Included in OWASP Top 10 since 2013

● Root cause of major data breaches

Open Research Webinars – page 3

https://www.bankinfosecurity.com/equifaxs-data-breach-costs-hit-14-billion-a-12473

Log4Shell

● Apache Log4j is a widely used logging library in Java

● CVE-2021-44228 allows for remote code execution (RCE)

● Low attack complexity, no privileges required, complete compromise → CVSS 10

● Attack succeeds if strings with JNDI lookups ${jndi:…} are logged by apps depending

on vulnerable versions of Log4j (2.0-beta9 to 2.14.1)

● Configuration settings can limit exposure and increase complexity (but not mitigate

completely)

● Not only user-facing apps are affected (but any app that receives and logs untrusted

input)

● Three other vulnerabilities have been found afterwards (CVE-2021-45046, 45105 and

44832)

● Latest non-vulnerable release is 2.17.1

Open Research Webinars – page 4

https://nvd.nist.gov/vuln/detail/CVE-2021-44228

Known vulnerabilities… Patch Exists!
Simply update?

• Depends on lifecycle phase and

deployment model

• May include breaking changes

• Majority of vulnerabilities in transitive

dependencies

• Re-bundles can also result in

vulnerable apps (3233 artifacts on

Maven Central contain the problematic

Log4j class JndiLookup)

Open Research Webinars – page 5

Open Research Webinars – page 6

Open Source Vulnerability Scanners
Two Approaches

Metadata-based

• Primarily rely on package names and versions,

package digests, CPEs, etc.

• Example: OWASP Dependency Check

(light-weight, maps against CVE/NVD)

Code-centric

• Detect the presence of code (no matter the package)

• Supports impact assessments (static and dynamic analyses),

esp. important for later lifecycle phases and non-cloud

• Supports update metrics to avoid regressions

• Example: Eclipse Steady (heavy-weight, requires fix-commits)

https://eclipse.github.io/steady/

Fix-commit for CVE-2020-10683

Static and dynamic reachability analysis

https://owasp.org/www-project-dependency-check/
https://eclipse.github.io/steady/

• Short CVE descriptions and varying quality of

referenced information

• Error-prone (2.3.5 and 2.3.6 were also

affected)

• Coarse-granular reference of entire projects,

ignoring reusable components and code (800+
artifact versions contain the resp. classes)

• CPE identifier != package identifier (30 search
hits for “mojarra” on Maven Central don’t
include org.glassfish:javax.faces)

Open Research Webinars – page 7

The getLocalePrefix function in
ResourceManager.java in Eclipse Mojarra before 2.3.5 is
affected by Directory Traversal via the loc parameter. A
remote attacker can download configuration files or Java
bytecodes from applications.

Affected products:

cpe:2.3:a:eclipse:mojarra:* up to (excluding) 2.3.5

CVE-2018-14371

Metadata-based
(Some) Limitations

https://search.maven.org/classic/#search%7Cga%7C1%7Cfc%3A%22com.sun.faces.application.resource.ResourceManager%22
https://search.maven.org/search?q=mojarra

Eclipse Steady
Code-centric detection and application-specific assessment

Open Research Webinars – page 8

Validate if vulnerable code is (1) contained and (2) executed by the application

• Applications typically include large pieces of OSS code where only a fraction of it is used

• Combination of static analysis (call graph construction) and dynamic analysis (test/runtime instrumentation)

Vulnerable

Code

Executed?

yes
High

Risk

no

Vulnerable

Code

Contained?

yes

Low

Risk

https://eclipse.github.io/steady/

Complementarity of dynamic and static analysis

Open Research Webinars – page 10

• Due to missing test case, dynamic

analysis does not find path starting from

ArchivePrinter.compressExploitability(Pa

th,Path)

• Due to the use of reflection, static

analysis does not find path starting from

Thread.run()

https://eclipse.github.io/steady/

Mitigation options supported by reachability
analyses

Open Research Webinars – page 11

• Exclude dependency

• Update (non-breaking)

T
o

u
c
h

p
o
in

ts
U

p
d

a
te

 m
e

tr
ic

s

• Fork and down-port security fix

• Implement application-specific safeguards

Vulnerability Data about Open-source Software
Should Be Open Too!

Open Research Webinars – page 12

Today

• Information about open source

vulnerabilities is scattered

• Mining is labor-intense despite

advances in AI-based commit

classification

• Providers step-in (and compete)

with proprietary databases

This does not scale, and has the paradoxical consequence that data about

open-source software is not open!

github.com/SAP/project-kb

Open Research Webinars – page 13

Open, collaborative, and trustworthy knowledge base of vulnerabilities (+fixes)

that affect open-source software

Git repositories used to store vulnerability statements

Plain-text data format, machine-readable and

human-readable

Tool-support

• Create, aggregate and validate statements

• Find fixes in open-source code repositories

Reducing the attack surface
removing bloated code

● Unused by the application

● Potentially usable by attackers

● Needs maintenance

Open Research Webinars – page 14

Case Study

Can existing debloating tools minimize the dependencies of an industrial grade

Java application?

● 260 application classes, 62 test classes yielding 446 test cases

● 2725 compile dependency classes

Reduced bloated code containing a potential security vulnerability

but did not handle a service loader definition

Open Research Webinars – page 15

Ponta, S., et al.:The Used, the Bloated, and the Vulnerable: Reducing the Attack Surface of an Industrial Application (2021)

Conclusion

Open Research Webinars – page 16

● Need for precise analysis techniques for effective vulnerability management

● Code-based approaches reduce FP and FN and support impact assessment

● Code-level information about vulnerabilities and their fixes is key

● Gathering and maintaining this information is best done in a collaborative

fashion

● Open formats and tools to enable publishing, sharing and

aggregating vulnerability data in an efficient, flexible, trustworthy fashion

● Reducing bloated code may dramatically reduce the attack surface of

applications

Links

https://github.com/eclipse/steady

https://eclipse.github.io/steady

https://github.com/SAP/project-kb

https://sap.github.io/project-kb

Acknowledgements

Sparta (EU-funded project)

https://www.sparta.eu/

AssureMOSS (EU-funded project)

https://assuremoss.eu/

Eclipse Steady & project "KB"
Dealing with vulnerabilities of open-source software

the open-source way

https://github.com/eclipse/steady
https://eclipse.github.io/steady
https://github.com/SAP/project-kb
https://sap.github.io/project-kb​
https://www.sparta.eu/
https://assuremoss.eu/

