

Open Research Webinars

Sat4j, from the lab to OW2 with and for Eclipse

Daniel Le Berre, Université d'Artois and CNRS

Agenda

- What does SAT stand for?
- What is SAT4J?
- Why OW2 is important for SAT4J?
- How is SAT4J related to Eclipse?
- Some remarks about Academic Software in the Economic world

What does SAT stand for? Academic and practical considerations

The SATisfiability Problem

- A combinatorial problem on Boolean variables
- Simple to express
- Simple to check that the provided solution is correct
- First problem shown to be NP-complete in 1971: they are instances of that problem that we cannot solve in reasonable time with a computer

The simplest hard problem in computer science

Academic view of SAT

- Boolean variables
- Clauses (disjunction of literals)
- Formula (conjunction of clauses)

ECLIPSE

RESEARCH @

- Problem: can I assign the variables in such a way that all clauses are satisfied?
- Decision problem: answer is yes or no Can also ask for the assignment (model)

 $v_1, v_2, v_3, v_4, v_5, v_6$

$$\neg v_1 \lor v_2 \lor \neg v_4$$

 $v_2 \lor v_4$ $\neg v_1 \lor v_4 \lor v_5$

 $\neg v_5 \lor \neg v_6$

Around SAT: Many related problems

- SAT: is it possible to satisfy all the clauses? Find any solution.
- PBO (Pseudo Boolean Optimization)
 - Cardinality constraints, Pseudo-Boolean Constraints
 - Objective function to optimize
- MAXSAT: satisfy as many clauses as possible
- #SAT: count the number of solutions

ECLIPSE

RESEARCH @

Academic practitioner view of SAT: SAT solvers

- File based input (Dimacs format)
- Provides an assignment if satisfiable

• Else

RESEARCH @

May provide a proof if unsatisfiable May also provide an unsatisfiable subset of the formula if unsatisfiable

```
p cnf 6 6
1 0
-2 3 0
-1 2 -4 0
2 4 0
-1 4 5 0
-5 -6 0
```

• The answer of the solver can be checked

ECLIPSE

Name	APPLICATIONS/c32sat/ post-cbmc-zfcp-2.8-u2-noholes.cnf		
MD5SUM	c4aa2ddc60eee766fbdf95a32eed5b43		
Bench Category	APPLICATION (applications instanc		
Best result obtained on this benchmark	SAT		
Best CPU time to get the best result obtained on this benchmark	51.5012		
Satisfiable			
(Un)Satisfiability was proved			
Number of variables	10950109		
Number of clauses	32697150		
Sum of the clauses size	76320846		
Maximum clause length	65		
Minimum clause length	1		
Number of clauses of size 1	2415		
Number of clauses of size 2	21783823		
Number of clauses of size 3	10907882		
Number of clauses of size 4	1592		
Number of clauses of size 5	131		
Number of clauses of size over 5	1307		

0

Results of the different solvers on this benchmark

Solver Name TraceID	Answer	CPU time	Wall clock time
SApperIoT base (complete) 1563400	SAT	51.5012	204.435
picosat 913 (complete) 1563397	SAT	116.704	120.088

General information on the benchmark

Name	CRAFTED/sgen/unsat/ sgen1-unsat-121-100.cnf
MD5SUM	24865fea2f97ba63d115c240cb3cb69
Bench Category	CRAFTED (crafted instances)
Best result obtained on this benchmark	
Best CPU time to get the best result obtained on this benc	chmark
Satisfiable	
(Un)Satisfiability was proved	
Number of variables	121
Number of clauses	252
Sum of the clauses size	756
Maximum clause length	3
Minimum clause length	3
Number of clauses of size 1	0
Number of clauses of size 2	0
Number of clauses of size 3	252
Number of clauses of size 4	0
Number of clauses of size 5	0
Number of clauses of size over 5	0

Results of the different solvers on this benchmark

Solver Name	TraceID	Answer	CPU time	Nall clock time
SAT07 reference solver: SATzilla CRAFTED (complete)	1785603	? (exit code)	4998.65	5001.1
SATzilla2009_C 2009-03-22 (complete)	1825787	? (exit code)	4998.65	5000.32
VARSAT-industrial 2009-03-22 (complete)	1785604	? (TO)	5000.04	5001.91
alucose 1.0 (complete)	1784160	2 (TO)	5000 04	5002 51

CW2

Why a SAT solver is extraordinary?

- It finds a needle in a Haystack!
- For n Boolean variables, the search space is 2^n
- $2^{10\,950\,109}$ correspond roughly to $10^{3\,000\,000}$
- 2¹²¹ correspond roughly to 10³⁶
- Number of atoms in visible universe: about 10⁸⁰

Any practical application?

SAT vs Software Dependency Management

Boolean variables

packages installed or not

• Clauses (disjunction of literals)

• Formula (conjunction of clauses)

dependencies conflicts

dependency graph

• Solution (model)

Installation profile

SAT as a dependency management problem

$eg a ee b ee c) \land (eg a ee \neg b \lor c) \land a \land eg c$

package: clause version: 1 depends: a = 2 | b = 1 | c = 1 package: clause version: 2 depends: a = 2 | b = 2 | c = 1

package: a version: 1 conflicts:	a = 2	<pre>package: b version: 1 conflicts: b = 2</pre>	<pre>package: c version: 1 conflicts: c = 2</pre>	package: version: depends:	clause 3 a = 1
package: a version: 2 conflicts:	a = 1	package: b version: 2 conflicts: $b = 1$	<pre>package: c version: 2 conflicts: c = 1</pre>	package: version: depends:	clause 4 c = 2

```
request: satisfiability
install: formula
```

RESEARCH @ ECLIPSE

Dependency management as a SAT problem

Dependencies can easily be translated into clauses

package: a version: 1 depends: b = 2 | b = 1, c = 1 $a_1 \rightarrow (b_2 \lor b_1) \land c_1$ $\neg a_1 \lor b_2 \lor b_1, \neg a_1 \lor c_1$ Conflict can easily be translated into binary clauses

package: a
version: 1
conflicts: b = 2, d = 1
$$\neg a_1 \lor \neg b_2, \neg a_1 \lor \neg d_1$$

Both problems are NP-complete!

SAT4J, OW2 and Eclipse

SAT4J: www.sat4j.org

- Implementation in Java of Minisat specification
- Clauses, Cardinality and pseudo-Boolean constraints
- Solves SAT, MAXSAT, PBO and related problems
- Provides also end user utilities (Boolean encodings)
- Written using Java Open Source Conventions and Practices

Ger the dual GNU LGPL/EPL licenses Open Research Webinars – page 17

SAT4J and OW2

- SAT4J supported since 2005 by OW2 (ObjectWeb)
 - CVS/SVN/git
 - Mailing lists/forums

ECLIPSE

- Issue tracker
- Releases

RESEARCH @

- Visibility outside academia (in open source ecosystem)
- First users were academics (MIT, UTEXAS, INRIA)

SAT4J and Eclipse: origin

- Pascal Rapicault working on p2 knew:
 - NP-completeness of dependency management
 - Early work on dependency solving using constraints solvers (EDOS, Linspire)
- Was looking for a solver to include in p2
 - Open Source
 - In Java
 - Reliable enough for inclusion in production software

SAT4J and Eclipse: integration

- 2008: Sat4j used as external component (file based)
- 2009: elected Eclipse committer to include Sat4j code inside p2 and provide explanation support and better objective function
- 2010: Eclipse marketplace opens, based on p2

Open Source Research Software Outside Academia

Why does it happen?

- Sat4j in OW2
 - First step to exist outside the lab
 - Only way for Eclipse to check for the reliability/support around the tool
- Sat4j in Eclipse
 - Sat4j built using Eclipse
 - Give back to the community
 - First answer was « no NP-complete solver in my IDE »
- Do my research around SAT but teach software engineering (using Java)

Summary

RESEARCH @

- Have a combinatorial problem? Check if a SAT solver can help
- Research software benefits from OW2 or research@Eclipse for reaching the economic market
 - Provides visibility outside the research community
 - Enforces market practices (QA, distribution, etc.)
 - Premium Open Source catalogs

ECLIPSE

Requires the mindset to build a product, not just a software

